
IMS 8 & 25: Linear regression with multiple predictors
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Packages

library(MASS) # for cats data set
library(tidyverse) # for ggplot functions/plotting
library(broom) # for tidy() function
library(openintro) # for loan data set
library(GGally) # for ggpairs() function
library(palmerpenguins) # penguin data set
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Example

Larger heart weights indicate a higher risk of heart attacks/disease in
cats; however, heart weight is hard to measure.

Want to see if there is a relationship between heart weight (Hwt) and
sex (Sex) for domestic cats.

If so, we will have a better idea of which cats are at risk for heart
attacks/disease.
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Example

Is sex a good predictor variable for the heart weight?
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Categorical Variable with Two Levels

Randomly pick 6 rows to preview:
set.seed(62)
index <- sample(1:nrow(cats), 6)
cats[index, ]

Sex Bwt Hwt
69 M 2.5 9.3
133 M 3.5 15.6
29 F 2.3 10.6
84 M 2.7 10.4
4 F 2.1 7.2
135 M 3.5 17.2

The variable Sex is a categorical variable with two levels: M and F
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Example

lm(Hwt ~ Sex, data = cats) |>
tidy(conf.int = T, conf.level = .95)

# A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 9.20 0.325 28.3 2.96e-60 8.56 9.84
2 SexM 2.12 0.396 5.35 3.38e- 7 1.34 2.90
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Example
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Categorical Variable with Two Levels

Interpretation for ̂𝛽0, ̂𝛽1 with an indicator variable
The expected mean value of 𝑌 for a subject in the level-0 group is ̂𝛽0
The expected mean value of 𝑌 changes by ̂𝛽1 units when a subject is
in level-1 group in comparison to the level-0 group

Example:

The expected mean value of Hwt when Sex = F is 9.20

We expect the mean value of Hwt to increases by 2.12 grams when
Sex = M in comparison to the Sex = F group (i.e. The expected
mean value of Hwt when Sex = M is 9.20 + 2.12 = 11.32)
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Categorical Variable with Multiple Categories

We will consider data about loans from the peer-to-peer lender, Lending
Club. The outcome variable we would like to better understand is the
interest rate assigned to the loan.

The dataset includes results from 10,000 loans, and we’ll be looking
verified income as the predictor variable.

interest_rate verified_income
1 14.07 Verified
2 12.61 Not Verified
3 17.09 Source Verified
4 6.72 Not Verified
5 14.07 Verified
6 6.72 Not Verified
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Categorical Variable with Multiple Categories

lm(interest_rate ~ verified_income, data = loans_full_schema) |>
tidy()

# A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 11.1 0.0809 137. 0
2 verified_incomeSource Verified 1.42 0.111 12.8 3.79e- 37
3 verified_incomeVerified 3.25 0.130 25.1 8.61e-135
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Categorical Variable with Multiple Categories
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Categorical Variable with Multiple Categories

The missing level is called the reference level and it represents the
default level that other levels are measured against.

A categorical variable that has 𝐾 levels where 𝐾 > 2, software will
provide a coefficient for 𝐾 − 1 of those levels.
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Discussion Questions

What information is useful when determining an interest rate on a
loan?

Why would “verified income” be a useful variable to look into? Why
not use “income” instead?

What if we considered other variables like criminal history?
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Proxy Variables

A proxy variable is a variable that is not in itself directly relevant,
but that serves in place of an unobservable or immeasurable variable.

Be very careful about interpretation! We use proxy variables often.
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Linear Regression with a Multiple Predictors

We are not limited to only one predictor variable.

We can add multiple predictors to models.

Want to see if sex (Sex) and body wieght (Bwt) can be used to
predict heart weight (Hwt) for domestic cats.
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Linear Regression with a Multiple Predictors

ggplot(cats, aes(x = Bwt, y = Hwt, color = Sex))+
geom_point()
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Linear Regression with a Multiple Predictors

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑒

𝑥1: sex, M for male or F for female.

𝑥2: body weight (Bwt) in kilograms

𝑦: heart weight (Hwt) in grams

𝑒: error
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Linear Regression with Multiple Predictors

lm(Hwt ~ Sex + Bwt, data = cats) |>
tidy()

# A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -0.415 0.727 -0.571 5.69e- 1
2 SexM -0.0821 0.304 -0.270 7.88e- 1
3 Bwt 4.08 0.295 13.8 5.12e-28
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Linear Regression with Multiple Predictors

Multiple predictors allows us to summarize the effect while controlling for
a variable. For example,

𝑦 = −0.415 − 0.0832𝑥1 + 4.08𝑥2

the coefficient of 𝑥1 is ̂𝛽1 = −0.0832 regardless if 𝑥2 = 2, 2.7, or 3, etc.
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Linear Regression with Multiple Predictors
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Linear Regression with Multiple Predictors

Interpretation:

The expected mean value of Hwt when Sex = F and Bwt =0 is
-0.415.

We expect the mean value of Hwt to decreases by −0.0821 grams
when Sex = M in comparison to the Sex = F group, holding Bwt
constant.

For every 1 kilogram increase in Bwt we expect the mean value of Hwt
to increase by 4.08 grams, holding Sex constant.
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Practice Problem
Let 𝑥1: sex; 𝑥2: body weight (Bwt) in kilograms; 𝑦: heart weight (Hwt) in
grams. Recreate the three different models we explored with the cats
data.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑒
𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝑒
𝑦 = 𝛽0 + 𝛽2𝑥2 + 𝑒

What do you notice about the three different models? What do you
wonder?
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Inference with Multiple Variables

Before, with a single predictor variable:

𝐻0 ∶ 𝛽1 = 0

𝐻𝐴 ∶ 𝛽1 ≠ 0

Now, with more than one predictor variable:

𝐻0 ∶ 𝛽𝑖 = 0, given other variables in the model

𝐻𝐴 ∶ 𝛽𝑖 ≠ 0, given other variables in the model

A low p-value (or CI that do not contain 0) tell us that a variable acts as
an important predictor in the model, even when controlling the effects of
other variables.
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Inference with Multiple Variables
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Recall: 𝑅2, Coefficient of Determination

In Chapter 7 we learned about the Coefficient of Determination (𝑅2),
which measures the proportion of the variation in the outcome variable 𝑌
that is explained by the linear regression model with single predictor 𝑋

𝑅2 = 1 − 𝑆𝑆𝐸
𝑆𝑆𝑇 = 𝑆𝑆𝑅

𝑆𝑆𝑇
It is the square of the correlation coefficient.
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𝑅2
𝑎𝑑𝑗, Adjusted Coefficient of Determination

For linear regression models with multiple predictors we use Adjusted
Coefficient of Determination (𝑅2

𝑎𝑑𝑗). Let 𝑛 be the number of
observations, and 𝑝 is the number of 𝛽s (not including 𝛽0)

𝑅2
𝑎𝑑𝑗 = 1 − 𝑆𝑆𝐸

𝑆𝑆𝑇 ( 𝑛 − 1
𝑛 − 𝑝 − 1)

Measures the proportion of the variation in the outcome variable 𝑌 that is
explained by the linear regression model with all of the predictors we used.
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𝑅2
𝑎𝑑𝑗, Adjusted Coefficient of Determination
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Practice
Let 𝑥1: sex; 𝑥2: body weight (Bwt) in kilograms; 𝑦: heart weight (Hwt) in
grams. Compare 𝑅2

𝑎𝑑𝑗 for the three different models we explored with the
cats data.

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑒
𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝑒
𝑦 = 𝛽0 + 𝛽2𝑥2 + 𝑒

What do you notice about the different 𝑅2
𝑎𝑑𝑗 and 𝑅2 values? What do you

wonder?

28 / 36



Multicollinearity

Sometimes a set of predictor variables can impact the model in
unusual ways, often due to the predictor variables themselves being
correlated.

Multicollinearity happens when the predictor variables are correlated
within themselves.

When the predictor variables themselves are correlated, the
coefficients in a multiple regression model can be difficult to interpret.

Check for multicollinearity by looking at the correlation between
predictor variables or linear trends between predictor variables.
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Example - Multicollinearity

We will consider data about loans from the peer-to-peer lender, Lending
Club. The outcome variable we would like to better understand is the
interest rate assigned to the loan.

The original loans_full_schema dataset includes results from 10,000
loans. We will take a smaller subset of 1000 for simplicity.

set.seed(62)
index <- sample(1:nrow(loans_full_schema), 1000)
loans_small <- loans_full_schema[index, ]
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Check for Multicollinearity
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Check for Multicollinearity
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Building Models

Things to consider when building models:

Keep models parsimonious (simple)

Avoid having two very similar variables (multicollinearity)

It is okay to have variables that are not statistically significant, they
might be important to the research question anyways.

It is okay to have variables in the model not important to the research
question, but you want to control for their effect.
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Example
Researchers studying a community of Antarctic penguins collected body measurement
(bill length, bill depth, and flipper length measured in millimeters and body mass,
measured in grams), and sex (female or male) data on 344 penguins. The data set is
called penguin in R.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2288.4650 631.5802 -3.6234 0.0003
bill_length_mm -2.3287 4.6843 -0.4971 0.6194
bill_depth_mm -86.0882 15.5698 -5.5292 0.0000
flipper_length_mm 38.8258 2.4478 15.8618 0.0000
sexmale 541.0285 51.7098 10.4628 0.0000

a) Calculate the residual for a male penguin that weighs 3750 grams with the
following body measurements: bill_length_mm = 39.1, bill_depth_mm = 18.7,
flipper_length_mm = 181. Does the model overpredict or underpredict this
penguin’s weight?

b) Interpret the slope for bill_depth_mm in context.
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Example
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Example
c) There are six pairs of continuous variables described in the figure, making six

different scatter plots. Rate the pairwise relationships from most correlated to
least correlated.

d) The residual plot is provided below. The (unadjusted) 𝑅2 is 0.823, and 𝑅2
𝑎𝑑𝑗 is

0.8208. Does the model we created appear to be a good fit?
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e) Recreate all plots and results in this problem in R.
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