

7: Linear Regression Models with a Single Predictor (Part 1)

Packages Needed To Recreate Code on Slides

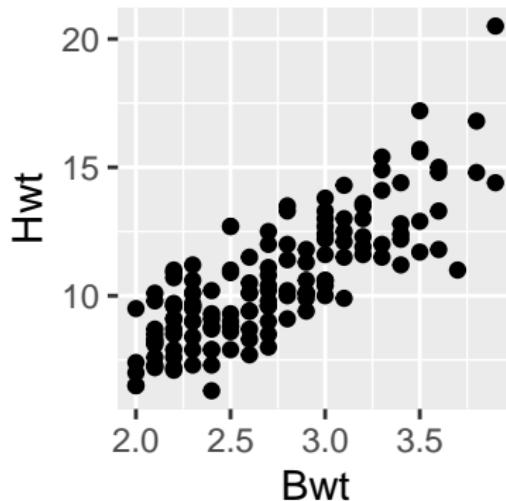
```
library(MASS)      # for data set
library(tidyverse) # for ggplot functions/plotting
```

Warning: It is not expected that you understand all the R code in this presentation right now. You will go over more R code in SDS 100 in the coming weeks. However, you are welcome to try to make these plots on your own.

Linear Regression with a Single Predictor

In this class we will focus on linear regression models, where we seek to model a relationship between two numerical variables using a straight line.

```
ggplot(cats, aes(x = Bwt, y = Hwt))+
  geom_point()
```



Linear Regression with a Single Predictor

What do we mean by saying “*linear regression model with a single predictor*”

- ▶ **predict**: indicate in advance
 - ▶ *x can help us indicate what y will be.*
- ▶ **regress**: to tend to approach or revert to a value/relation
 - ▶ *x & y values approach a common relationship.*
- ▶ **linear**: $y = b_0 + b_1x$
 - ▶ *x & y relationship can roughly be described by a straight line.*
- ▶ **model**: an informative representation of an object, person or system.
 - ▶ *Educated guess for b_0 & b_1 describing the relationship of x & y.*

Linear Regression with a Single Predictor

Linear regression models can be used for:

- 1) prediction

If I have a new data value x^ , can I guess what its corresponding value for y would be?*

- 2) evaluate whether there is a linear relationship between two numerical variables.

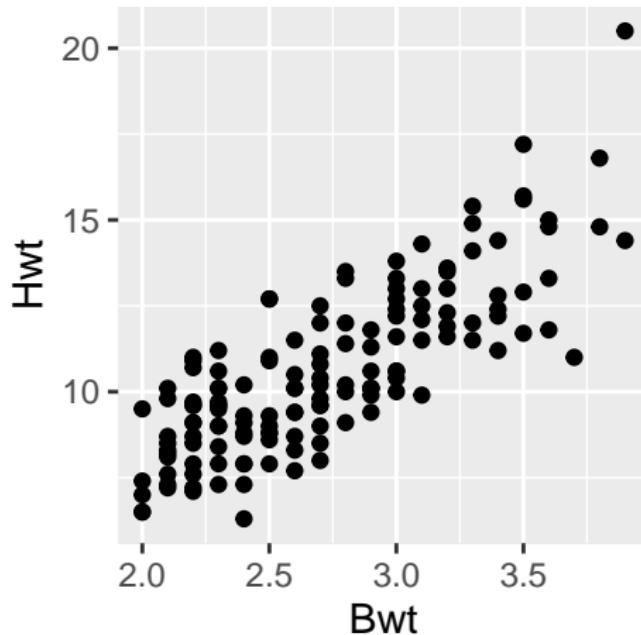
Does a linear relationship exist between x and y ?

Linear Regression with a Single Predictor

- ▶ Larger heart weights indicate a higher risk of heart attacks/disease in cats; however, heart weight is hard to measure.
- ▶ Want to see if there is a relationship between heart weight (Hwt) and body weight (Bwt) for domestic cats.
- ▶ If so, we will have a better idea of which cats are at risk for heart attacks/disease.

Real Sample Data for Domestic Cats

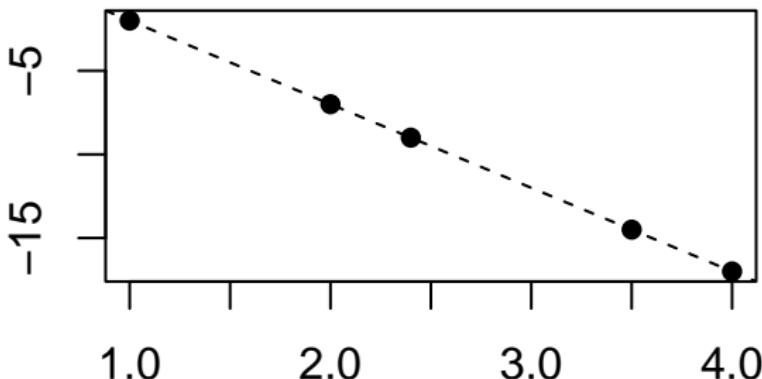
```
ggplot(cats, aes(x = Bwt, y = Hwt)) +  
  geom_point()
```



Lines in Mathematics

$$y = b_0 + b_1 x$$

- ▶ A linear regression line in mathematics usually takes the above form.
- ▶ In a typical math class this is a perfect relationship!
- ▶ For example: Let $y = 3 - 5x$ and consider points $x = 1, 2, 2.4, 4, 3.5$



Fitting a line to data

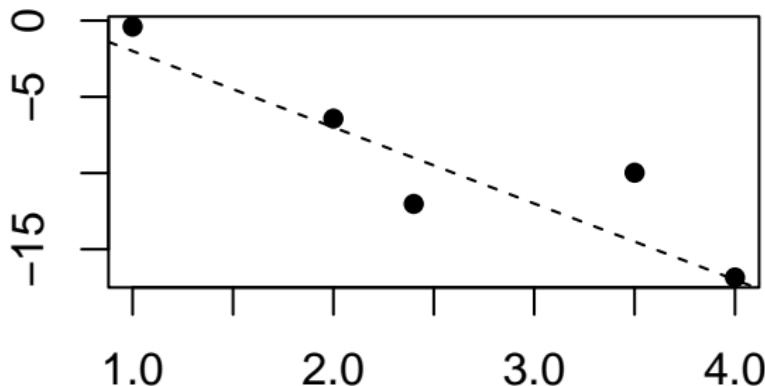
- ▶ Instead of the usual math equation we add an *error* term

$$y = b_0 + b_1 x + e$$

- ▶ b_0 : intercept
- ▶ b_1 : slope
- ▶ x : **predictor** variable
- ▶ y : **response** variable
- ▶ e : error (source of wiggliness around the line)

Fitting a line to data

When we add the random error.

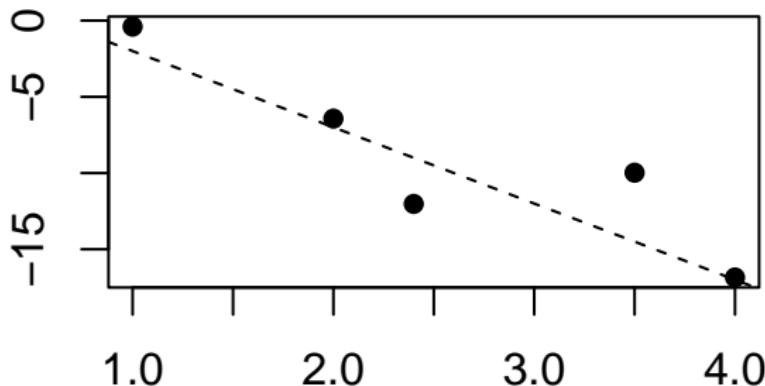


We want to find a good b_0 and b_1 , but now it is not as straight forward because the points do not perfectly fall on the line.

If the dashed line was *not* known, how would we find it?

Fitting a line to data

When we add the random error.



We want to find a good b_0 and b_1 , but now it is not as straight forward because the points do not perfectly fall on the line.

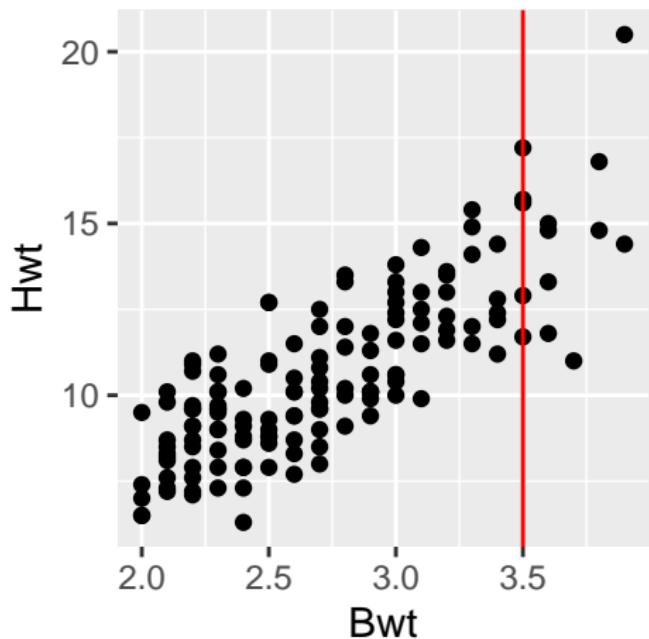
If the dashed line was *not* known, how would we find it?

Coming soon!

Predicting New Values

The cat below weighs **3.5 kg**, but we do NOT know the heart weight.

Can we guess this cat's heart weight?



Predicting New Values

Suppose our regression line is

$$\text{Hwt} = -0.3567 + 4.0341 \text{ Bwt}$$

We can use this line to predict a new value. We denote predicted values with a hat.

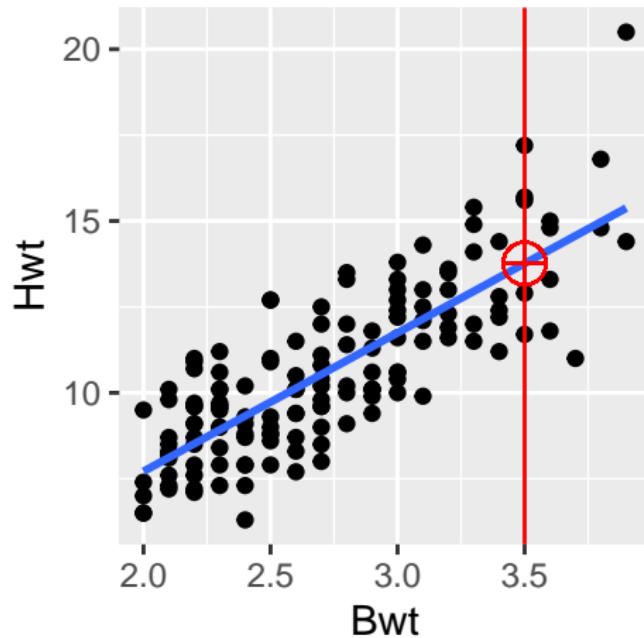
$$\hat{y} = b_0 + b_1 x$$

or for this specific situation we can write

$$\widehat{\text{Hwt}} = -0.3567 + 4.0341 \text{ Bwt}$$

Predicting New Values

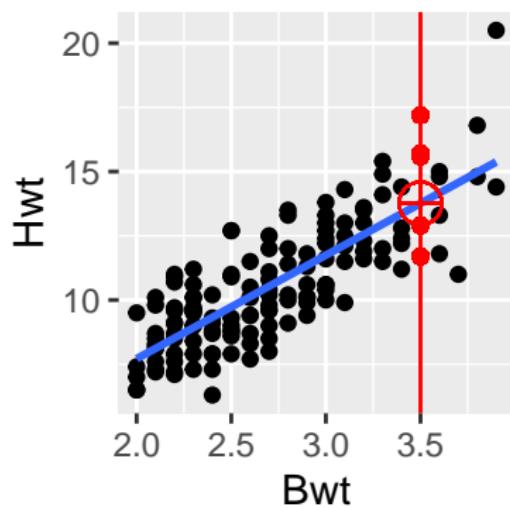
New value is $\widehat{Hwt} = 13.8$ (rounded)



What does this predicted value mean?

- ▶ Note: five cats in the data set that had body weight 3.5. We can use the predicted value as the mean heart weight for cats with a body weight of 3.5.
- ▶ That is, if we believe this is the true linear relationship, *the equation predicts that cats with a body weight of 3.5 kg will have a mean heart weight of 13.8 g.*

Subject	Bwt	Hwt
67	3.50	17.20
106	3.50	15.70
112	3.50	15.60
81	3.50	12.90
125	3.50	11.70



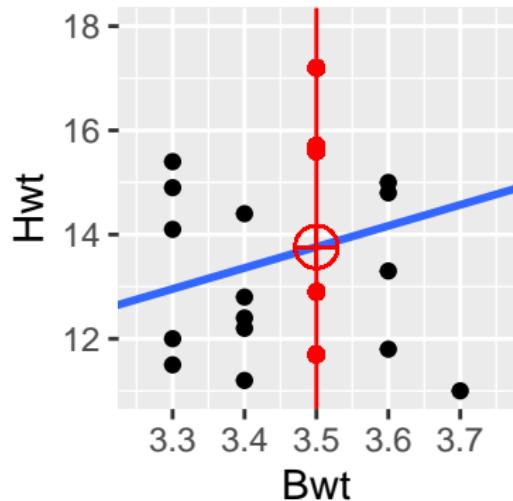
What does this predicted value mean?

- ▶ **predict**: indicate in advance
 - ▶ *Bwt can help us indicate what Hwt will be.*
- ▶ **regress**: to tend to approach or revert to a value/relation
 - ▶ *For any value of Bwt, there is a mean Hwt.*
- ▶ **linear**: $y = b_0 + b_1 x$
 - ▶ *The relationship between Hwt and Bwt loosely resemble a line, so the means probably do too.*
- ▶ **model**: an informative representation of an object, person or system.
 - ▶ *We do not know the values for b_0 and b_1 , we have to guess.*

Residuals

- ▶ None of the cats in the data set with $Bwt = 3.5$ had $\widehat{Hwt} = 13.8$.
- ▶ The difference between the values in the data set and their corresponding fitted value is called the **residual**.

Subject	Bwt	Hwt	residual
138	3.50	17.20	3.40
110	3.50	15.70	1.90
115	3.50	15.60	1.80
23	3.50	12.90	-0.90
96	3.50	11.70	-2.10



Residuals

More formula (and general):

$$e_i = y_i - \hat{y}_i$$

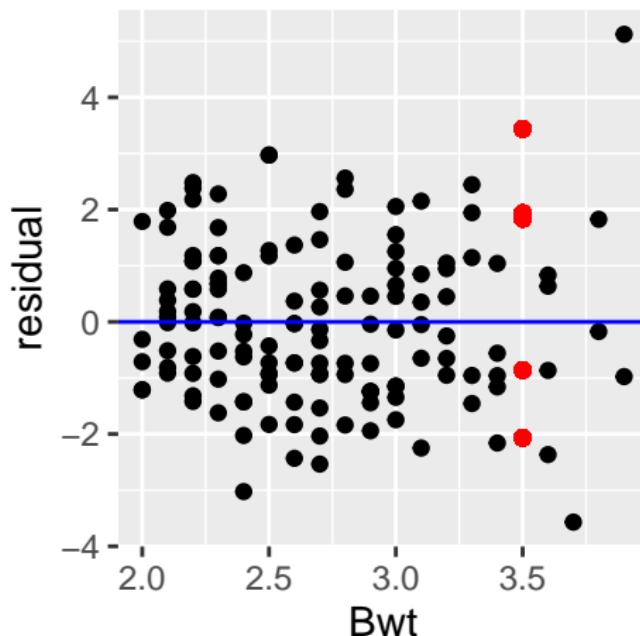
For this situation:

$$e_i = \text{Hwt}_i - \widehat{\text{Hwt}}_i$$

- ▶ We can calculate the residual for every observation in the data set. This is also called the **error** (the wiggliness from the line).
- ▶ A residual can also be described as the difference between observed (y_i) and fitted (\hat{y}_i) values.

Residual Plot

- ▶ Residuals are helpful in evaluating how well a linear model fits a data set.
- ▶ The residual is on the y-axis, and the predictor variable is still on the x-axis.



Residual Plot

What are we looking for in a residual plot?

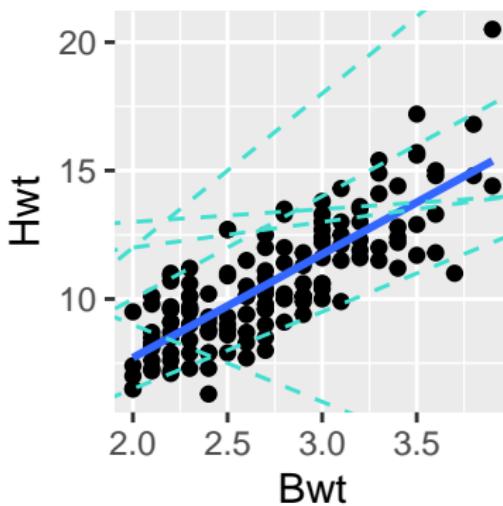
- ▶ We want to see a cloud of points with no pattern.
- ▶ Recall single numerical variable plots: dot plot, bar plot, histogram.
- ▶ Imagine one of these plots for each value on the x axis. Would these plots look the same?

Connection to Correlation

- ▶ Correlation and linear regression models with a single predictor are **VERY RELATED!**
- ▶ Correlation is an indicator of how well the *best linear model* would represent the data.

How do we find the best line?

- ▶ We want the line that makes *all* of the residuals as small as possible.
- ▶ There are infinitely many possible lines, we can find the *best* line with mathematics!



How do we find the best line?

Ideally, we might want a line that minimizes the distance between the observed and fitted values,

$$\sum_{i=1}^n |e_i| = |e_1| + |e_2| + \dots + |e_n|$$

this is a great goal! However, in practice squared distance is more practical

$$\sum_{i=1}^n e_i^2 = e_1^2 + e_2^2 + \dots + e_n^2$$

How do we find the best line?

Why squared residuals:

- 1) A residual twice as large as another residual is more than twice as bad.
- 2) Easier to work with than absolute values.
- 3) Better statistical properties (this metric comes up more naturally in theorems).
- 4) The most supported technique in current statistical software.

How do we find the best line?

Thus we want to find b_0 and b_1 that minimize

$$\sum_{i=1}^n e_i^2 = e_1^2 + e_2^2 + \dots + e_n^2$$

Equivalently, we want to find b_0 and b_1 that minimize

$$\sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2$$

Coming Up!

Other Variables

It is possible that other factors could influence these variables. For example, what about Sex?

