
7: Linear Regression Models with a Single
Predictor (Part 2)
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Packages Needed To Recreate Code on Slides

library(mfp) # for bodyfat data set
library(MASS) # for cats data set
library(tidyverse) # for ggplot functions/plotting
data(bodyfat) # load data

Warning: It is not expected that you understand all the R code in
this presentation right now. You will go over more R code in SDS
100 in the coming weeks. However, you are welcome to try to
make these plots on your own.
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Linear Regression with a Single Predictor

What do we mean by saying “linear regression model with a single
predictor”

▶ predict: indicate in advance
▶ 𝑥 can help us indicate what 𝑦 will be.

▶ regress: to tend to approach or revert to a value/relation
▶ 𝑥 & 𝑦 values approach a common relationship.

▶ linear: 𝑦 = 𝑏0 + 𝑏1𝑥
▶ 𝑥 & 𝑦 relationship can roughly be described by a straight line.

▶ model: an informative representation of an object, person or
system.

▶ Educated guess for 𝑏0 & 𝑏1 describing the relationsip of 𝑥 & 𝑦.
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Linear Regression with a Single Predictor

Linear regression models can be used for:

1) prediction

If I have a new data value 𝑥∗, can I guess what it’s corresponding
value for 𝑦 would be?

2) evaluate whether there is a linear relationship between two
numerical variables.

Does a linear relationship exist between 𝑥 and 𝑦?
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Does this fashion hack work?

Image from TikTok @nicolefay_
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Linear Regression with a Single Predictor

▶ Want to see if the circumference of our hips (hip) is related
to the circumference of our neck (neck).

▶ If so, we can avoid dressing rooms!
▶ Data were supplied by Dr. A. Garth Fisher, Human

Performance Research Center, Brigham Young University, who
gave permission to freely distribute the data and use them for
non-commercial purposes.

▶ Data set is from 252 men, and records various body
measurements.
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Linear Regression with a Single Predictor
ggplot(bodyfat, aes(x = neck, y = hip))+

geom_point()

100

120

140

35 40 45 50
neck

hi
p

7 / 42



Note on Notation

The regression model assumes that true relationship is the
following:

𝑌 = 𝛽0 + 𝛽1𝑋

However, in practice there are nuances we can not capture. So
what we actually observe is

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖
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Note on Notation

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖

That is, 𝑦𝑖 is variable, and that variability can be broken up in two
parts:
▶ variability that can be

explained by neck size
▶ everything else, the ’left

over’
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Note on Notation

𝛽0 and 𝛽1 are considered to be the unknown truth.

We want to estimate them!
▶ We denote estimates for 𝛽0 as:

̂𝛽0 or 𝑏0

▶ We denote estimates for 𝛽1 as:

̂𝛽1 or 𝑏1
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Fitting a Linear Regression Model

Want to find 𝑏0 and 𝑏1 such that:

𝑚𝑖𝑛 {
𝑛

∑
𝑖=1

[𝑒𝑖]
2}

Equivalently:

𝑚𝑖𝑛 {
𝑛

∑
𝑖=1

[𝑦𝑖 − (𝑏0 − 𝑏1𝑥𝑖)]
2}
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Fitting a Linear Regression Model

We can then use techniques from calculus to identify these values

𝜕
𝜕𝑏0

𝑛
∑
𝑖=1

[𝑦𝑖 − (𝑏0 − 𝑏1𝑥𝑖)]
2 𝑠𝑒𝑡= 0

𝜕
𝜕𝑏1

𝑛
∑
𝑖=1

[𝑦𝑖 − (𝑏0 − 𝑏1𝑥𝑖)]
2 𝑠𝑒𝑡= 0

These solutions can be written as functions of the summary
statistics we have already seen:

▶ 𝑏1 = 𝑟 𝑠𝑦
𝑠𝑥

▶ 𝑏0 = 𝑦 − 𝑏1𝑥
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Exercise

Can you find the estimates for 𝑏0 and 𝑏1 with the following
summary statistics?

c(mean(bodyfat$hip), sd(bodyfat$hip))

[1] 99.904762 7.164058
c(mean(bodyfat$neck), sd(bodyfat$neck))

[1] 37.992063 2.430913
cor(bodyfat$neck, bodyfat$hip)

[1] 0.7349579
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Interpretation

What do 𝑏0 and 𝑏1 really tells us?
▶ The expected mean value for 𝑌 when 𝑋 = 0 is 𝑏0

▶ For every one unit of increase in 𝑋 we expect the mean value
of 𝑌 to change by 𝑏1 units

This wording is important!

Try this on your own for this example.
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Interpretation

Example:
▶ The average value for hips is 17.615 when neck is 0.
▶ For every one cm of increase in neck the expected mean value

of hips to increase by 2.16 cm

Warning:
▶ The coefficient 𝑏0 dose not always have a useful interpretation.
▶ 𝑋 units and 𝑌 units can be different.
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Evaluating the model fit

▶ Previously we used 𝑟 as a quick and simple gauge for
assessing the relationship.

▶ To use a more rigorous evaluation method, we need more
tools.
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Sum of Squares
We can measure the variability of the 𝑌 values by how far they
tend to fall from their mean 𝑦. This is called total sum of
squares (SST).

𝑆𝑆𝑇 =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑦)2

▶ Similar to variance.
▶ Describes overall variability.
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Sum of Squares

Recall our start! The variation in 𝑌 can be explained by two parts,

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖

Through algebraic manipulation we can rewrite SST,

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)2 =
𝑛

∑
𝑖=1

( ̂𝑦𝑖 − 𝑦)2 +
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2

We denote the above components as

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸
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Sum of Squares

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸

▶ total sum of squares (SST): the total variability of 𝑌
▶ regression sum of squares (SSR): the variability of 𝑌

explained by the model (𝑋)
▶ error sum of squares (SSE): the variability of 𝑌 NOT

explained by the model. What is ‘left-over’
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Sum of Squares
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Sum of Squares
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Coefficient of Determination

▶ Coefficient of Determination (𝑅2): measures the
proportion of the variation in the outcome variable 𝑌 that is
explained by the linear regression model with predictor 𝑋

𝑅2 = 𝑆𝑆𝑇 − 𝑆𝑆𝐸
𝑆𝑆𝑇 = 𝑆𝑆𝑅

𝑆𝑆𝑇
▶ Note: 𝑅2 is just the correlation squared!
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Linear Regression Models in R with Body Data

Estimates for 𝑏0 and 𝑏1

fit <- lm(hip ~ neck, data = bodyfat)
summarize_fit <- summary(fit)
summarize_fit$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.615163 4.8116950 3.660906 3.066444e-04
neck 2.165968 0.1263926 17.136832 4.574017e-44
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Linear Regression Models in R with Body Data
Linear regression model

ĥip = 17.62 + 2.17 neck

ggplot(bodyfat, aes(x = neck, y = hip))+
geom_point()+
geom_smooth(method = "lm", se = F)
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Linear Regression Models in R with Body Data

Obtaining 𝑅2

summarize_fit$r.squared

[1] 0.5401631

Interpreting 𝑅2

About 54% of the variability of hip can be accounted for by the
model (the neck variable)
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Outliers in Regression

There are many types of outliers in regression models
▶ extreme 𝑋 values
▶ extreme 𝑌 values
▶ extreme/unusual combinations of 𝑋 and 𝑌
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Outliers in Regression
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Outliers in Regression

▶ We worry about outliers when cause undue influence and pull
the line away from the cloud of points.

▶ If we had fitted a line without a point and it would be
dramatically different we call this point an influential point.

▶ Do not hastily remove outliers, they could be the most
important!
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Influential Points

If we see a big change in the linear regression line after removing a
value we call this point influential.
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Extrapolation

What if a women wanted to check if this fashion hack worked? Or
a child? Could they use the model we made?
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Categorical Variable with Two Levels

▶ Sometimes we wish to use a categorical predictor variable.
▶ When we only have two levels we can code them with an

indicator variable
▶ We use 0 for one category and 1 for the other category.

Note:
▶ It does not matter which category is 0 or 1.
▶ We can even do a 1 and 2 coding, or 3 and 4. If we do this

though our intrepretation changes.
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Categorical Variable with Two Levels
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Categorical Variable with Two Levels

Interpretation for 𝑏0, 𝑏1 with an indicator variable
▶ Interpret the intercept: The expected mean value of 𝑌 for a

subject in the level-0 group is 𝑏0

▶ Interpret the slope: The expected mean value of 𝑌 changes by
𝑏1 units when a subject is in level-1 group in comparison to
the level-0 group

Why say expected mean?

This is the mean of the data, but the model is an estimate of the
relationship. We do not know the mean of the population.
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Categorical Variable with Two Levels

Interpretation for 𝑏0, 𝑏1 with an indicator variable
▶ Interpret the intercept: The expected mean value of 𝑌 for a

subject in the level-0 group is 𝑏0

▶ Interpret the slope: The expected mean value of 𝑌 changes by
𝑏1 units when a subject is in level-1 group in comparison to
the level-0 group

Why say expected mean?

This is the mean of the data, but the model is an estimate of the
relationship. We do not know the mean of the population.
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Categorical Variable with Two Levels

Suppose ĥip = 100.15 − 0.48 AgeGroupOld

Example:
▶ Interpret the intercept: The expected mean value of hip for a

subject in the Young (0) group is 100.15
▶ Interpret the slope: The expected mean value of hip

decreases by 0.4842 cm when a subject is in Old (1) group
in comparison to the Young (0) group
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Example Problems
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Cats Data
Recall the cats data set:
ggplot(cats, aes(x = Bwt, y = Hwt))+

geom_point() + labs(x = "Bwt (kg)", y = "Hwt (g)")

10

15

20

2.0 2.5 3.0 3.5
Bwt (kg)

H
w

t (
g)

37 / 42



Example 1

Suppose:

𝐵𝑤𝑡 = 2.724 𝐻𝑤𝑡 = 10.63
𝑠2

𝐵𝑤𝑡 = 0.235 𝑠2
𝐻𝑤𝑡 = 5.93 𝑅2 = 0.65

Answer the following prompts:

1. Calculate 𝑟
2. Calculate ̂𝛽0 and ̂𝛽1

3. Write out the linear regression model.

4. Interpret ̂𝛽0 and ̂𝛽1 in context.
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Example 1- Answers

1. 0.80

2. -0.3567, 4.0341

3. 𝐻𝑤𝑡 = −.3567 + 4.0341 Bwt

4. Interpretation
▶ The expected mean value for Hwt when Bwt = 0 is −.3567.
▶ For every one kg of increase in Bwt we expect the mean value

of 𝑌 to increase by 4.0341 g.
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Example 2
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Example 2

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.262404 0.1980372 51.820576 3.984219e-94
SexM 1.499457 0.2800670 5.353924 3.379786e-07

1. Write out the linear regression model.

2. Interpret ̂𝛽0 and ̂𝛽1 in context.

3. If my cat is a female that has a heart weight of 12 g, what is
her corresponding residual?
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Example 2 - Solutions

1. Ĥwt = 10.26 + 1.50 SexM

2. Interpretation
▶ The mean value of Hwt when Sex = F is 10.26
▶ We expect the mean value of Hwt to increases by 1.50 grams

when Sex = M in comparison to the Sex = F group

3. -1.74
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