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Introduction

Solar irradiance measurements are highly correlated with the
amount of energy produced by a grid of photovoltaic panels.
Thus, reliable forecasting of irradiance will lead to reliable fore-
casting of energy output.
Utility-scaled solar plants are becoming more prominent. Model-
ing and forecasting methods of systems over various spatial and
temporal resolutions are needed.
The spatio-temporal kriging forecaster [1]:

Z (s0, t0) = µ (s0, t0) + c (s0, t0)′Σ−1 (Z− µ)
where Z = (Z (s1, t1) , . . . , Z (sn, tn))′ for n space-time co-
ordinates, µ = E [Z] ,Σ = cor (Z), and c (s0, t0) =
cor (Z (s0, t0) ,Z).
Aryaputera et al. [2] used non-separable, direction dependent
covariance models to forecast solar irradiance data.
• They used separate models fitted individually to time and
space.

• The separate models were multiplied to make a separable
covariance model.

• A non-separable model was used in which the separability
parameterization of [3] was fitted.

• A directional model was used based on prior knowledge of
wind for the day and location of their data set.

Purpose

For this project, we introduce a visual method that uses the
correlation in the irradiance data to specify the directional
covariance model.

The data that we used are from the Sacramento Municipal Utility
District (SMUD) which consisted of 65 sensors placed throughout
Sacramento County. Measurements were recorded on April 3,
2010, once every minute. A clear sky model was used to detrend
the data [4].
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Figure 1: (Left) Locations of the data and (right) observed and detrended data
for one sensor. The observed data is shown for the entire day. The detrended
is only shown for 7:00 am to 4:00 pm.

Separable and Fully Symmetric Models

The separable covaraince model first fits models to the time
correlation and the spatial correlation separately
• Exponential Spatial Correlation Function :
Cs(h) = (1− v)exp(−c||h||) + vIh=0

• Cauchy Temporal Correlation Function :
Ct(u) = (a|u|2α + 1)−τ

The separable covariance model is then
Csep (h, u) = Cs (h)× Ct (u)

The non-separable fully symmetric model is

CFS(h;u) = 1− v
(1 + a|u|2α)

exp

−c ∗ h

1 + a|u|2αbeta/2
 +


v

1− v

 Ih=0



The values of v, c, a, and α are the same as for Csep. Using
these values, β is estimated which indicates the level of
separability (0 = separable, 1 = non-separable).
The first 50% of the data is used as a training dataset to fit the
models.

Figure 2: Spatial correlation fit with exponential model, temporal correlation
fit with Cauchy model

Directional Models

• Calculate the directional distances for each pair of sensors:
h1 =along wind distance, h2 =crosswind distance

• Find the differences between along wind correlation,
corr (Z (si, t− u) , Z (sj, t)) , and against wind correlation,
corr (Z (si, t) , Z (sj, t− u)), for some time lag u for each pair
of sensors i 6= j

• The difference correlation is modeled as
Cdiff (h, u) =

Iu>0Ih1>0
β(u)
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• The directional correlation function is then
Cdir (h, u) = CFS (h, u) + αCdiff (h, u)
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Figure 3: Example of directional distance

Figure 4: Correlation vs Lags

Results

• We used 50% training data. We utilized a moving window
approach in which the previous 50% data was used to fit the
model and then predict the next u = 1, . . . , 10 time points.

• When fitting the models to the estimated correlations in
Figure 2, we used weighted nonlinear least squares
implemented with the nls function in R. The weights we used
were inverse distance weights.

• When determining the direction, we only examined
directional plots for the first 50% training data. For
computational speed, we did not regenerate for each predicted
time point. Thus, we are assuming the wind direction stays
constant throughout the day.

• From the directional plots, we determined that the previous
20 minutes of data should be used to predict the next time
point(s).

• From Figure 5, we can see that the directional model results
in the lowest root mean squared prediction error.
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Figure 5: Root mean square prediction error for the three covariance models
predicting 1, . . . , 10 time points ahead. The gray line represents the standard
deviation of the testing data.
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